
Mobile Wireless Network System Simulation*

Joel Short, Rajive Bagrodia, Leonard Kleinrock
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90024

Abstract. In this paper; we describe an advanced simulation environment which is used to examine, validate, andpredict the performance
of mobile wireless network systems. This simulation environment overcomes many of the limitations found with analytical models, experi-
mentation, and other commercial network simulators available on the market today We identify a set of components which make up mobile
wireless systems and describe a set offlexible modules which can be used to model the various components and their integration. These
models are developed using the Maisie simulation language. By modeling the various components and their integration, this simulation envi-
ronment is able to accurately predict the performance bottlenecks of a multimedia wireless network system being developed at UCLA, deter-
mine the trade-offpoint between the various bottlenecks, andprovide performance measurements and validation of algorithms which are not
possible through experimentation and too complexfor analysis.

1. Introduction

When developing mobile wireless network systems (i.e., wireless
networking algorithms, node architectures, and network infrastruc-
tures), the designer is presented with numerous design alternatives.
There are numerous factors which can impact the analysis, perfor-
mance and validation of these design alternatives. These. factors
range from having to support different patterns of node mobility to
integrating the traffic generators, networking algorithms, and oper-
ating system capabilities.

A few operating system kernels and languages have been

designed to support wireless and mobile communication [1], and a
number of protocols have been devised to solve the numerous
topology setup and maintenance, media access control, and trans-
mission problems in the mobile environment [ll]. Commercial
radios designed to be hooked up with laptops for wireless multime-
dia transmissions are available in the market. Thus although solu-
tions to different facets of the wireless mobile information system
design are appearing, relatively little effort has been devoted to
understanding the performance impact of the interactions among
different components of the system.

Traditionally, analysis, simulation and measurement have all
been used to evaluate the performance of network protocols and
multimedia systems. Measurement-based approaches are useful
only after the system has been deployed. Although they offer the
most accurate evaluations of performance problems, they are often
inadequate because it may be infeasible to modify the deployed sys-
tem to experiment with a large range of design parameters. Even
when such modifications are feasible, the cost of the necessary soft-
ware and hardware modifications may be exorbitant. Analytical
models offer the opportunity to quickly examine a large parameter
space to identify efficient configurations; however for complex sys-
tems with many interacting components, analytical models may
either be inaccurate or computationally intractable. For complex,
heterogenous systems, simulations are often the only realistic alter-
native to performance prediction.

* This work was supported in part by the Advanced Research
Projects Agency, ARPAICSTO, under Contract J-FBI-93- 112 Com-
puter Aided Design of High Performance Wireless Networked Sys-
tems.

The primary drawback with detailed simulation models is that
they are frequently slow. Experience with many existing network
simulators has shown that a performance study of wireless proto
cols for even small networks (tens of nodes) can take many days;
running such simulations for networks involving a large number of
mobile elements is clearly infeasible. Recent experience with paral-
lel execution of models for personal communication systems has
shown that parallelism offers significant potential to improve the
execution time for these models; it is likely that these techniques
can also be exploited to improve the execution time for simulation
models of wireless networks. This paper describes such an environ-
ment.

The rest of the paper is organized into several sections. We begin
with a description of the primary components which make up
mobile wireless systems in section 2. Section 3 describes the new
simulation environment used to analyze performance of such sys-
tems. We see how the environment and various models of the sys-
tem are built using an existing message-passing based simulation
language called Maisie. Section 4 presents the results of a simula-
tion study to evaluate the performance of a specific mobile wireless
multimedia system that is being designed at UCLA. Experiments to
validate the simulation are also presented. In section 5 we see the
related work in this area and then the conclusion and acknowledg-
ments are found in sections 6 and 7 respectively.

2. Mobile Wireless Systems

There are numerous ways to design and examine mobile wireless
systems. In order to provide a common reference model to analyz-
ing these systems, we break the system down into three integrated
levels: network, node, and algorithm. The network level is used to
describe the architecture of the network and details of each node
such as its communication capability, location, and impact on the
network. The node level is used to describe. the details of the node
such as its hardware and software capabilities and interaction such
as with the operating system and among algorithms. The algorithm
level describes the details of a specific algorithm or layer of the pro-
tocol stack.

195

2.1 Mobile Wireless Networks

Wired Backbone

Lid/
I

Wireless /
/

--

Wireless Nets

Instant Infrastructure
Wtreless Sub-Nets

Figure 1: Mobile Wireless Networks

In figure. 1 we see an example of a mobile wireless network. This
network is composed of not only a static wired backbone and a few
wireless cells, but also a set of nodes which am able to support
instant infrastructure, and multi-hop packet radio networks. We
include throughout this paper the study of instant infrastructure net-
works, nodes and their algorithms since support for this architecture
requires additional flexibility upon the simulation environment and
illustrates the complex environment mobile wireless network sys-
tems can operate in.

The network nodes shown in figure 1 are comprised of numerous
software clomponents which can be used to support self-configur-
ing, multihop, multimedia networking architectures and can be

added to the capability of each node as shown in figure 2.

2.2 Mobile Wireless Nodes

The design of mobile wireless nodes/terminals have been studied

by various groups [17][14]. In this section we describe the compo-
nents which make up the node architecture and the implementation
of the network control functions, multimedia suppon communica-
tion substcates, and the interfaces between them. The node func-
tionality, as shown in figure 2, is supported in the nodes being
developed in the Wireless Adaptive Mobile Information System
(WAMIS) research project at UCLA [141. These nodes are used as a
test-bench For experimentation and validation.

In the following subsections, we will describe various compo-
nents and algorithms which make up this typical instant infrastruc-
ture node’s functionality.

2.2.1 Applications

Applications are needed for interaction between the system and
the user. Multimedia support is necessary not only for acquisition
and presentation of video, speech, and data but also for coding/
decoding for efficient transmission through the wireless network.

Transport Control

I
Internetworking &

Connectivity Control

Subnetwork Control

Link Control Link & Mobility Control
i

Adaptive Wireless
Communications Substrate

Connection

Figure 2: Node Functionality

The standard set of TCP/IP protocol suite applications support
text based services like remote login or file transfers. New applica-
tions am now appearing which support multimedia (Netscape and
video conferencing applications). In order to see the effect and
demonstrate multimedia over mobile wireless networks, a video
conferencing application was developed on the test-bench. This
application (VideoTALK) brings together video, which uses UDP,
and data, which uses TCP, into a single application on the laptop. In
order to test the performance of the system, testing tools were
developed to measure throughput, delay, packet loss, and track
adaptive parameters in the communication device (radio) such as
code, power, and spreading factor (i.e. chips/bit). A topology ana-
lyzer program (TOPO) was developed which can be used in the
simulation environment or in the implemented system to graphi-
cally analyze the virtual topology of the wireless multihop s&net.

2.2.2 Operating System

The operating system is responsible for integrating all these net-
work control components together. There are numerous operating
systems available today such as Microsoft Windows, PC-Disk
Operating System, Mac OS, and UNIX which can have a big
impact on the node’s capabilities and performance. However, these
systems are not designed for ease of programmability or flexibility
in the implementation and validation of networking algorithms and
thus do not lend themselves to a flexible mobile wireless network
system test-bench. An operating system is desired which is compat-
ible with existing platforms today but still provides functionality
such as multi-tasking and packet processing capability useful to
network control algorithms and can be easily modeled in the simu-
lation environment. A network operating system is able to function
on a layer on top of an existing native operating system and provide

196

the required network functionality and services. A public domain
network operating system, NOS (also known as KA9Q developed
by Phil Kam), has readily available source code and meets the flex-

ibility requirements[5]. We use this network operating system in

our test-bench [Figure 31. It runs on top of DOS and includes its

Figure 3: Network Operating System Components

own multitasking scheduler. The benefit of this multitasking operat-
ing system is that each algorithm or protocol necessary to support
this network can be developed as its own process. The multitasking
kernel allows these algorithms and protocols to multitask, sharing
the CPU, and yet provide semantics such as wait and signal sema-
phores for inter-process (inter-algorithm) communication. Time
processing routines, such as TDMA, are able to sleep a process for
a defined period of time, and can be used to allow other protocols
and algorithms to run without halting or consuming unnecessary
CPU processing time. Memory buffers (mbufs as found in BSD
UNIX system buffers) are used to minimize overhead by allowing
memory blocks to be linked together for performing encapsulation,
packetization, etc.

Our current test-bench uses a NEC Versa 486 33Mhz laptop and
a docking station to support custom interfaces and hardware. The
WAMIS Network Operating System is able to run on any laptop as

long as that laptop supports DOS and the required interface cards.
A Packet Interface (PI) card is used as the network interface card to
integrate the wireless communication hardware into the system. In
order to provide a standard interface to the network operating sys-
tem, a packet driver interface is used. The packet driver interface is
based upon FTP’s packet driver specification. This interface allows
various network interface cards (like the PI card or a PCMCIA
card) to be used in place of one another without having to change
the details of the network operating system in order to support a
new or different communication substrate. A packet driver is loaded
which corresponds to the correct Network Interface Card (NIC) and
its capability. There are also other communication hardware driv-
ers/interfaces such as the NDIS or ODI drivers which can be used to
integrate the communication hardware with the operating system.

2.3 Multimedia Support

Various multimedia hardware support, such as speech (DSP) and
video (Frame Grabber) cards, is now available for laptops. As more
multimedia devices are made available for the mobile wireless net-

work nodes, the greater impact and demand on the performance,
capabilities and functions will have on the design and integration of
such systems. The system integration and networking support
issues and analysis will become critical since these multimedia
devices place greater demands on the system architecture, such as
bus bandwidth, and networking services, such as virtual circuits.

2.4 Wireless Communication Hardware

There are numerous wireless radio modems commercially avail-

able [lo]. Many of the algorithms being designed for mobile wire-
less systems are built to support a particular device/manufacturer.
Algorithms which are not designed for a specific radio face the
problem of trying to predict the performance of their algorithms
over such a wide parameter space of available radio alternatives.
The best way to validate over a wide parameter space of various
radios, is to utilize the models of the various radios in the simula-
tion environment and do experimentation with those which are fea-
sible to experiment with.

The UCLA WAMIS test-bench not only supports commercially
available radios, such as the Proxim RangeLan 2, but also uses a
specialized direct sequence spread spectrum radio designed and
implemented at UCLA [8][9]. This radio is used to support instant
infrastructure networking through adaptive hardware control and
feedback with the networking algorithms. This radio is currently
able to operate at speeds from 7 to 32 Kbps depending on the
spreading factor desired. Although other radios are able to support
higher data rates, this radios provides a unique ability to control
various hardware parameters such as the spreading (chips/bit),
code, power, and even acquisition time. In Table 1 we can see the
spreading factor (chips/bit), data rate, and acquisition time trade-
off. It should take anywhere from 500 to 1000 data bits to acquire

chips Data Optimistic Conservative
Per Rate ACQ ACQ
bit (kbps) Time Time

31 32.258 15.5 ms 31 ms

63 15.873 31.5 ms 63 ms

127 7.824 63.5 ms 127 ms

Table 1: UCLA Radio Parameters

the signal so a preamble is sent before each packet according to the
desired acquisition time. Since the radio transmits at a fixed rate of
I Mchips/sec. and we are able to vary the number of chips/bit, then
we are able to achieve the various data rates as described above.
The reason one would not always necessarily want to use the fastest
data rate is that the lower the spreading, the less resilience to noise
and interference. By using more chips/bit (slower data rate) we are
able to have more capacity of the network and less interference. It is
up to the network control algorithms, with development and analy-
sis support from the simulation environment, to determine what
these parameters should be set at for optimum network efftciency.

197

2.5 Mobile Wireless Algorithms 2.5.3 Instant Infrastructure Subnetwork Control

2.5.1 Tra:nsport and Internetworking Control

Since internetworking requires compatibility with existing net-
works and TCP/IP is so widely used through the Internet. the TCPI
IP protocol suite has been implemented without need for modifica-
tions. Since the Internet Protocol can be used in conjunction with
various communication substrates, much of the new mobile wire-
less algorithm development takes may place below the network
layer. The network layer is responsible for supporting various com-
munication substrates such as internet routing, segmentation, etc.
Above the network layer, the transport protocols (TCP and UDP)
provide the required support for end-to-end reliability, congestion
control, etc. These transport protocols interact with the applications
described in the: previous section by using sockets to buffer the bit
stream so packetization can take place. Additional services are also

being developed to support multimedia over mobile hosts [131

The functionalities which support instant and recontigurable net-
works are new and have been added into the TCP/IP stack (Figure
3) on the UCLA test-bench. Many of the proposed schemes for sup-
porting instant and reconfigurable network topologies are based
upon TDMA to control channel contention. A clustering algotlthm

[1 I] was implemented which is heavily based on TDMA control
and synchronization to test the feasibility and overhead of imple-
menting this functionality in software.

2.6 Link Layer Control

Although wireless communication is useful to support mobile
communication, wired connections can support much higher band-
width and are less prone to errors then wireless radios. Therefore,
wired connections should be utilized whenever possible. Wired
connections, such as ethernet, can utilize standard communication
hardware, such as a PCMCIA card, for networking. In order to sup-
port a combination of wired and wireless communication, provide
wireless multihop functionality, and support instant infrastructure
networking, a node needs to be able to function in three different

modes (gateway, multihop, or end node) as shown in figure 4. A
node functions as a gateway when both wired and wireless connec-
tions are available. In the gateway mode, it will forward packets
between the wired and wireless domains as necessary. In the multi-
hop mode, it will follow the sub-network routing protocol to pro-
vide wireless multihop communication within the subnet. Other
mobile wireless network systems are not be focused on instant
infrastructure networks, but upon support mobility throughout the
intemet.

Algorithms developed for link layer control fall into a separate
category from other networking algorithms. These algorithms are
usually not implemented inside the operating system, they usually
exist in hardware or programmable processors as part of the NC.
For maximum flexibility, simplicity of implementation, and provide
a path between simulation and implementation, these algorithms
could be implemented as part of the other algorithms in the operat-
ing system. To experiment and determine where an algorithm
should be implemented, the simulation environment can utilize
models or actual code of the link layer control algorithms.

The link layer control components typically include algorithms
such as media access control (e.g., CDMA, TDMA, and CSMA/
CA). The link and mobility control layer shown in figure 2 supports
a new function unique to instant infrastructure mobile wireless net-
working. Mobility support is provided by setting appropriate hard-
ware parameters such as the CDMA code or transmit power level
dynamically. Measurements such as Signal to Interference Ratio
(SIR) are fed back from the radio into the link control algorithms to
do power control and minimize the power consumption of the I.ink,
reduce interference, and provide admission control such as
described in [7].

3. Simulation Environment
2.5.2 Mobile IP

The IETF Working Group for Mobile IP has developed an Inter-

net Draft fo:r IP Mobility Support [121. Much of the focus of this
group has been on protocol functionality and standards not on per-
formance analysis. By incorporating the Mobile IP type protocol
into this simulation environment, feedback can be provided to ven-
dors interest,ed providing implementations of these protocols on its
performance as a function of various mobility environments, net-
work connectivity substrates (wireless & wired), and various trafftc
loads. The Mobile IP protocol can also be integrated with numerous
other system components.

The analysis of the Mobile IP protocols in this simulation envi-
ronment will be useful to validate and enhance the simulation envi-
ronment an’d prototyping implementation path. In addition to
protocol designers, the prototype can provide immediate feedback
to other groups in industry and academia that are developing proto-
cols in conjunction with Mobile IP to support other network and
operating system functionalities.

We have designed a general purpose parallel environment for the
simulation of mobile wireless network systems and provide an
implementation path for networking algorithms. The simulation
environment can be used to evaluate the effectiveness and perfor-
mance of algorithms as a function of the application requirements,
mobility patterns, and radio characteristics. The simulator is being
built on top of an existing message-passing based parallel simula-
tion language called Maisie [3]. The Maisie simulation envi:ron-
ment has been implemented on a variety of workstations, on
networks of workstations and on distributed memory multicomput-
ers like the IBM SPl and on a shared memory Spare 1000. In the
following sections we will see how the simulation environment is
supported by the Maisie simulation language and the various mod-
ules.

3.1 Mobile System Simulation Modules

The modeling environment is designed to allow the primary
components of the wireless network system to be simulated at dif-
ferent levels of details. Thus, it might be useful to initially have an
approximate but fast model of a11 components and then refine the
details of some of the components that appear to be the primary ibot-

198

tleneck(s). Our aim is to decompose the model in order to allow
maximum flexibility in experimentation with alternative implemen-
tations of a given functionality (e.g. mobility patterns of the node)
as well as to support a ‘plug and play’ capability that generates
composite models constructed from pieces that model system com-
ponents at widely differing levels of detail.

- - - - - - - - - - - - - L,;~;“;

Figure 4: Common Reference Model

Since one is able to use the simulation with very simplistic
grossly simplified models for various aspects of communication,
the coding time to develop a model is very quick. One can simply
right a few lines of Maisie code to represent a networking protocol.
Maisie is an ideal language to develop models of networking proto-
cols since it is a message-passing based discrete-event driven simu-
lation language. The network algorithm and protocol models can
then be iteratively refined to C source code which can be actually
used in the final implementation.

Our model of the mobile, wireless network system is broken
down into three levels with the following primary components:

l Node Mobility Models (MOM)
l Channel Models (CHM)

l Wireless Radio Models (RFM)
l Operating System Models (OSM)

9 Application-specific traffic models (SOURCEM)
l Network Algorithm Models (NAM)

The MOM components are responsible for movement patterns of
the nodes such as the speed in which the nodes move and their
motion pattern such as brownian random motion or drift. The CHM
components are responsible for the transmission media including
the range in which two nodes are able to communicate with each
other, and environmental effects such as multi-path fading, shadow-
ing, and interference.

The RFM components are responsible for the physical layer
modeling of the radio frequency modem and includes the raw chan-
nel bandwidth, modulation techniques, and acquisition delaysThe
OSM simulates the relevant portion of the operating system, such
as the WAMIS Network Operating System (WAMISNOS) kernel,
and is involved in interfacing with the application (e.g. delivery of
incoming messages) or with the network (e.g. transmission of
remote messages). The OSM components include multi-tasking
process scheduling, packet manipulation routines, time control, and
interfacing such as between the SOURCEM and NAM and between
NAM and RFM.

The SOURCEM components can be broken down into the source
and destination streams (e.g.: hard disk, keyboard, camera, screen,
microphone, or speaker) corresponding to the voice, video and data
traffic, the control of these streams via the application, and the
transport mechanism (e.g.: TCP, UDP, or Virtual Circuits) which
the application chooses to use. The NAM components are broken
down into internetwork models such as IP, instant infrastructure
subnetwork control such as clustering, and mobility control such as
power control, logical link control, and media access control.

These components can be viewed as fitting in with the reference

model as shown in Figure 5.

MOM

OSM

Figure 5: OS1 Network View

Before getting into examples of how the various models can be
developed using Maisie. under section 3.3, a brief overview of the
Maisie simulation language is provided in the following section.

3.2 The Maisie Language

A Maisie program is a collection of entity definitions and C func-
tions. An entity definition (or an entity type) describes a class of
objects. An entity instance, henceforth referred to simply as an
entity, represents a specific object in the physical system and may
be created and destroyed dynamically. An entity is created by the
execution of a new statement and is automatically assigned a

199

unique identifier on creation. For instance, the following statement
creates a ne’w instance of a manager entity and stores its identifier in
variable r I.

rl = new manager{ N);
An entity can reference its own identifier using the keyword self.

Entities communicate with each other using buffered message-pass-
ing. Maisie defines a type called message, which is used to define
the types of messages that may be received by an entity. Definition
of a message-type is similar to a struct; the following declares a
message-type called req with one parameter (or field) called count.

message req (int count; };
Every entity is associated with a unique message-buffer. A mes-

sage is deposited in the message buffer of an entity by executing an
invoke state:ment. The following statement will deposit a message
of type req with time stamp clock()+t, where clock is the current
value of the simulation clock, in the message buffer of entity ml.

invoke ml with req(2) [after t]
If the after clause is omitted, the message is time stamped with

the current simulation time. If required, an appropriate hold state-
ments (described subsequently) may be executed to model message
transmission. times or a separate entity may be defined to simulate
the transmission medium. An entity accepts messages from its mes-
sage-buffer by executing a wait statement. The wait statement has
two components: an optional wait-time (t3 and a required resume-
block. If tC is omitted, it is set to an arbitrarily large value. The
resume-block is a set of resume statements, each of which has the
following form:

mtype(mi) [st bi] statementi;
where mi is a messagstype, bi an optional boolean expression

referred to as a guard, and statementi is any C or Maisie statement.
The guard is a side-effect free boolean expression that may refer-
ence local variables or message parameters. If omitted, the guard is
assumed to be the constant true. The message-type and guard are
together referred to as a resume condition. A resume condition with
message-type mi and guard bi is said to be enabled if the message
buffer contains a message of type mi, which if delivered to the
entity would cause bi to evaluate to true; the corresponding message
is called an enabling message.

With the ,wait-time omitted, the wait statement is essentially a
selective receive command that allows an entity to accept a particu-
lar message only when it is ready to process the message. For
instance, the following wait statement consists of two resume state-
ments. The resume condition in the first statement ensures that a
req message is accepted only if the requested number of units are
currently available (the requests are serviced in first-fit manner).
The second resume statement accepts a free message:

wait until
(mtype(frq) st (unils >= msgnq.counr)
I’ signal requa:ter that request is granted *I
or mtype(frecb I* n:turn units to the pool *I

I

Maisie also provides a number of pre-defined functions that may
be used by an entity to inspect its message buffer. For instance, the
function qsize(mt) returns the number of messages of type mtin the
buffer. A special form of this function called qempty(mt) is
defined, which returns true if the buffer does not contain any mes-
sages of type mt, and returns false otherwise. In general, the resume

condition in a wait statement may include multiple message-types,
each with its own boolean expression. This allows many complex
enabling conditions to be. expressed directly, without requiring the
programmer to describe the buffering explicitly.

If two or more resume conditions in a wait statement are enabled,
the time stamps on the corresponding enabling messages are com-
pared and the message with the earliest time stamp is removed and
delivered to the entity. If no resume condition is enabled, a timeout
message is scheduled for the entity tC time units in the future. The
timeout message is canceled if the entity receives an enabling res-
sage prior to expiration of tr; otherwise, the timeout message is sent
to the entity on expiration of interval tc Thus the wait statement can
be used to schedule conditional events. A hold statement is pro-
vided to unconditionally delay an entity for a specified simulation
time. For instance, the statement hold(t) will suspend the corre-
sponding entity for t units in simulation time.

3.3 Simulation Environment Models

The simulation environment models are broken down into two
categories: global and local. The global models are responsible: for
modeling the interaction among the nodes at the network level. The
global models include the mobility (MOM) and channel (CHM)
models. The local models are responsible for modeling the fimc-
tionality inside a node. In order from one local model in a node to
communicate with another node’s local model, communication
using the global models must take place. One local model is able to
communicate and integrate with other local models as long as they
are kept on the same node.

We now look at the details of what some of the responsibility of
each module is and an example model of one of the components.

3.3.1 MOM

The mobility models include, but are not limited to, the following
components:

l tracking location of the nodes
l speed of the nodes
l direction of motion

In order for the channel model to track the location, and thus
have the channel model be able to determine which nodes are able
to send packets to each other, the x and y coordinates of each nodes
are tracked. Since the mobility model is responsible for tracking the
location of each node, a node can not simply update its position
locally but must send a message to the mobility model to have it
update the nodes new location so the channel model which is coor-
dinating communication in that area can utilize the node’s locadon
information.

In order to model speed (such as stationary, walking speed, run-
ning speed, driving speed, or even flying speed) and direction of
motion (such as drift or a semi-random walk), the channel model
can select a random step size which it is able to move within. Once
the new position is selected and forced to remain within the space
(grid) of the simulation, its new position is updated.

200

To get a feeling for an example model of mobility, the following
Maisie fragment shows how the speed (MOVINGJANGE) of a
mobile can be modeled with a semi-random direction.
or mtype(move)

I
id=msg.move.id;
pnsition[i&r = posirion[id].x-

(int)lrand48()%(MOVlNG~~NGE*2+I)+MOVING_RANGE:
pfsifion[idJ.y = position[idJ.y-

(int)lrand4s()%(MOVINGRANG~~NG~2+l~~OVlNG_RANGE:
if(posifinn[id&O) position[idl.*
if(yosirion[i~.y<O)posiIion[i~.~~;
if@osition[id]~max-xr;r)

posirion[id].x=mu.r~;
if(posifiun[idl.y>mc)

position[idJ.j=mux-y;

3.3.2 CHM

The channel model is responsible for determining which nodes
are able to communicate with each other and what the received
information or quality of information should look like. The CHM
components can include, but are not limited to, the following:

l Distance/Range
l Shadowing (such as Log-normal)
l Attenuation (such as Free-Space)
l Multi-path (such as Raleigh Fading)

Once the channel models determine the effects of transmitting
data through the wireless channel, the radio RFM models can inter-
act in a realistic manner.

In the following Maisie fragment, we see how the channel model
is able to determine which nodes a broadcast packet should be
received by. The actual packet (message) is sent to the appropriate
node via the invoke statement.

mtype(brwdccrrr)

I

for (i=j; i<=nwn&le~; i++)
if (i != b.id)
if (scyt(pow((double)@osirion[b.id]~ - posifion[il.x). 2.0) + pow((double)@osi-

riun[b.idl.y-pusirion[l~.y). 2.0)) <(double) COMhfJANGE)
invdte pkrdnvfi] wlthp~in(b.idb.info];

1

When a packet is to be transmitted, the time lapse from when the
receiver gets the packet is scheduled in the channel model by the
hold routine in Maisie.

hold(TXTIME);

The modulation technique used, whether it be DSSS or Fre-
quency Hop Spread Spectrum (FHSS), both effect the simulation
environment. In a DSSS modem, the amount of spreading (chips/
bit) of the original signal, or in a FHSS modem, the number of fre-
quency bands which overlap, and thus the number of available
(CDMA) codes affect the usefulness and reliability of the wireless
channel (CHM) and simulation as a whole.

The transmit time (TXTIME) is actually determined by the RFM. 3.3.4 OSM

3.3.3 RFM

The RFM module is a local model which is responsible for the
data link and physical layer modeling inside the node layer of the
radio frequency modem, and includes, but not limited to, the fol-
lowing components:

l Link Level Media Access Control Algorithm
l NIC Interfacing Overhead
l Acquisition Delays
l Raw Bandwidth (Data Rate)
l Modulation Techniques (Spread Spectrum Direct

Sequence or Spread Spectrum Frequency Hop)

Any time a packet is to be sent over the wireless channel, the
media access control algorithm is responsible for determining if or
when that packet can be transmitted. A common media access con-
trol algorithm is the Carrier Sense Multiple Access/Collision
Avoidance algorithm such as found in the IEEE 802.11 specifica-
tion. This will impose a delay and bandwidth overhead for every
packet sent. This algorithm can be modeled inside the simulation
environment to not only test feasibility and performance but also to
see the implication on other aspects of the node and network. The
analyst could also choose not to model the CSMA/CA algorithm
itself but simply provide a metric in the RFM as the setup time
before a packet can be transmitted and include this as part of the
signal acquisition time (preamble).

Other link level control algorithms such as CRC checking, pre-
amble, bit stufftng, etc. can be modeled at various levels of details.
The model can include the details of the bits being transmitted or
model this overhead by holding the RFM from being able to trans-
mit for the period of time it would take to do such link level control
processing.

The raw bandwidth affects how long it takes for a packet or bits
in the packet to propagate to the next node dependent on certain
parameters of the radio being used. Given the packet size, we can
use the data rate to model how long it will take, for the packet to be
transmitted through the wireless channel.

For the UCLA radio described, the RFM parameters include
50ms for acquisition of each packet, IOms for tail processing on
each packet, and a raw channel rate of 32 Kbps. The actual trans-
mission time through the air can be determined in conjunction with
the channel model since the transmission time (TXTIME) can be
calculated as follows:

(1)
PkrSize l 8

TXTIME = AcqTime + DaraRate + TailTime

The Operating System Model has three primary components:
l kernel model
l application interface model
l network interface model

The kernel model provides the basic functionality needed to sim-
ulate a multi-tasking OS kernel. It models a (dynamic) set of inter-
acting processes, where each process is simulated by a Maisie
entity and the interprocess communication and synchronization is
simulated by appropriate message communication among the corre-
sponding entities. Henceforth, we use the term ‘kernel entity’ to
mean a Maisie entity that is simulating a NOS kernel process.

201

The KP9Q kernel uses interrupts to interface with many of its
drivers; hence the kernel entity used in the simulation environment
models also supports interrupts. The entity may (dynamically)
specify the set of enabled interrupts. A common source of interrupts
in tbe kernel is the arrival of a packet for the corresponding entity.
We present a short Maisie fragment to illustrate the handling of an
interrupt called ‘pktin’ by a kernel entity called ‘wproc’. The wait
statement on the following fragment models an interruptible activ-
ity. The time specified in the wait statement is initially set to t,
which models its execution time in the absence of any interrupts. If
an interrupt: (pktin) is received during this interval, the entity sus-
pends normal operation, executes a pre-specified routine to handle
the interrupt, and suspends itself for ti time units, where ti models
the time taken to execute the interrupt handling routine in the phys-
ical kernel.. Note that this model assumes interrupts cannot be
nested, because a hold statement is used to simulate service of the
interrupt. It is possible to instead use an interruptible wait statement
to model nested interrupts. After executing the hold statement, the
entity again executes the wait statement with an updated wait-time
to complete the simulation of the original activity. For simplicity all
time units are expressed as integers in this fragment. The function
clocks) returns the current value of the simulation clock.

;llt;; wpmc(id,pkrdrvr,ipalgptrJ

ename pktdrw
ename ipalgptr;

1
messagepktin(int pkttype; int /en; int id; int info;) pkr;
int newlm. remtime. m~imr;

for C;)
(endtime=eloek()ttc;

remtime=tc;

fa(;;)
wait remtime until
(mtyp4pktin)

(pkt=mq.pktin;
newlenqlkt.len-HEADER-SIZE;

if @kt.pktt~pe==clurtJype)
clust~t~tgkr(idncighborl_cvn_ch

pkt. idpktinfo);

if (pkt.pkttype==ip-type)
ip_got,At(id,newlenpkt. idpkxinfo,

pktdrwipulgptr);

remtime=mndtimr-cbck();
hold(ti);

1
Oc mlype(timcout) be&

The application interface model interacts with the SOURCEM
model to both accept a message for delivery to another node and
also to deliver an incoming message. In either case, the kernel pro-
vides the interface needed by the application to the network and
simulates the software delays that are typically suffered by the mes-
sage as it passes through the kernel of an operational OS. This delay
can be sim,ulated either by doing a detailed (and hence timecon-
suming) simulation of the various kernel modules, or approximated
by simply delaying the message by a randomly distributed value,
where the distribution is chosen to reflect the aggregated behavior
of various kernel modules.

Similarly, the network interface model will determine the trans-
mission mode of the message (e.g., datagram or bit stream) and pro-
vide the message to the NAM in an appropriate format from the
network interface. A driver such as the packet interface driver is
typically used as the NIC interface. Note that the kernel delay:; can
be simulated either in the application or the network inte:rface
model (or both), depending on the analyst and the application being
simulated.

3.3.5 SOURCEM

The SOURCE Models are composed of, but not limited to, the
following components:

l source & destination streams
l application control
l end-to-end transport mechanisms

One of the primary uses of the mobile wireless network nodes are
to exchange data, voice, or video. The input or source of the data
voice, or video usually comes from either the hard disk, memory,
keyboard, microphone, or camera. The output or destination usually
goes to either the hard disk, memory, screen, or speaker. Depending
upon the analyst’s need, it is typically not required that the actual
data, voice, or video images be sent from one source stream TV the
destination but rather modeled based upon certain characteristics.
The characteristics modeled for the hard drive and memory include
read and write access time, models of the voice streams include the
rate and silence charactedstics, and models of the video stream usu-
ally include the frame size, frame rate, and other control informa-
tion such as frame delimiters.

The application control component is responsible for controlling
the source and destination streams in conjunction with the transport
protocols. The application affects the environment such as by deter-
mining if, when, and what data, video, or speech should be sent.
Typical applications used in the mobile wireless system imple-
mented include the standard TCP/IP applications such as mF’ and
telnet along with custom multimedia applications such as a video
conferencing (VTALK) application.

In order to deliver the streams of data, video, and speech an end-
teend transport mechanism is used. These protocols typically
include TCP and UDP for data and usually virtual circuits for multi-
media in order to provide bandwidth allocation. vpical functional-
ity of the transport protocols include providing flow control, error
detection and possible retransmission of lost or corrupted data, and
acknowledgment of data received. As an example, we can see in the
following Maisie fragment the functionality of TCP and RP used
in a file transfer to send data, check for acknowledgments of sent
data, and retransmit lost packets upon a time-out.

for (i=MSS;i<FILE3Z&MSS;i=i+MSS)

-wait RTO until /’ RTO = Round-aip Time&t *I
I
mtyp+ck); I* Packet Received *I
or m(ype(timewt) /* PHI a ACK Lost *I

i=i-MSS; I* Resend last packet l /
t
P Genaate frp packet *I
sen$acket@ktdrvr,f*_ty~, id, 0. i. MSS);

I’ Type. Prom, To. Info. Len *I
num+3s37v[irl]+;

202

In order to model the source and destination streams, application
control, and transport mechanism, traffic generators are used to
generate the data streams corresponding to the voice, video, or data
traffic expected to be generated by the different types of applica-
tions. Table 2 lists a set of example applications. For each applica-

APP~. Trans. =I== FI-P TCP

speech V.C.

-
Pkt. Tl-dfiC

Size Burstyness

Large LOW

Small

Small

Large

Large

Small

High

High

LOW

LOW

High

Goal

Max.

Throughput

Min.

Delay

Min
Delay

Mi3JC
Throughput

Max.

throughput

Delay &
Throughput

Table 2: SOURCEM Characteristics

tion, the transport protocol that is commonly used, typical packet
size, traffic type, and metric to be optimized is listed.

3.3.6 NAM

The network algorithm model components are the focus for those
developing wireless and mobile networking algorithms. We break
the Network Algorithms Models into the following layers:

l Network Layer
l Sub-Network Layer
l Data Link Layer

The network layer components include the internetworking func-
tionality. The Internet Protocol is commonly used either in its
entirety or just a model of IP to provide functions such as domain
addressing, routing, segmentation, and reassembly. Other protocols
modeled in this layer include the ICMP for control messages and

Mobile IP [12] for mobility tracking and support of roaming
through the intemet.

The wireless subnet, whether it be a base station and its clients or
a wireless multihop cluster are found in the sub-network layer. The
subnetwork layer models are used to model the topology creation
(instant infrastructure), reconfigurability, adaptive channel assign-
ment (CDMA), and wireless multihop routing.

As an example of a NAM, below is a Maisie fragment for the
clusterhead election algorithm found in [1 I]. The basic idea of the
algorithm is that between any two nodes that can communicate, the
node with the lowest ID should become the clusterhead with the

restriction that two clusterheads can not communicate directly;
however, they can communicate via a gateway by multi-hopping
between the two clusters.

entity clusf~mc(idp~dn’r.neighbor.l_um_chJ
int id,
ename yktdrvr. I* From OSU *I
int *neighbor.
int*I-am-ch;
(
fa w
I
hold(RESET~T/MEOC/l-);

/* Reset neighbor and clusterhead tables l /
for (i=l; i<=N; i*)
I

ncighbor[i]=- I ;
I-urn-ch[i]=O;

1

I* Send “I’m here” msg to all neighbas l /
invoke pkrdrvr with brvudcurr(id, 0) ;

I* Wait to hear responses from neighbars l /
hdd(RESPONSE-TIM@;

/* Run the Clusterhead election alg. *I
I-am-ch[idj = I ;
for(i=l;i<id;i++)

if ((f_~_ch[ij=I)a&(n~i~~~~i]=l))
(/-urn-ch[idj = 0; break;)

/* Broadcast Clustering Packet Update ‘l
I’ Info (1) = Not CH; info(2) = CH *I
invoke pkrdrvr with

bro&rrct(idl-am-ch[idl+l);

1’

The algorithm works by first clearing out the table of everyone
who it can talk to. Then all nodes broadcast a message to inform
everyone else who their neighbors are. Starting with the lowest pos-
sible ID, with the lowest ID. It assigns those nodes as clusterheads
where each next highest node can only be a clusterhead if none of
its neighbors that it received a broadcast packet from is not a clus-
terhead. This is done iteratively until all nodes know if they are a
clusterhead or not. Each node also knows who its neighbors are.
Each node does not have any global knowledge of the topology.

The data link layer models are used to provide mobility and link
level control such as power control [7] (utilizing various power lev-
els available on the radio and adapting the SIR measurement),
media access control via a TDMA based time frame[1 I], error con-
trol such as the spreading factor which the radio transmits on, the
CRC functions, and possibly even the Reed-Solomon forward error
correction, and lastly the logical link control such as providing a
hop by hop based acknowledgment scheme such as described in

[W

3.4 Real-time Control and Feedback

In order to provide feedback and interactive control, the control
parameters in the simulation can be changed in real-time [6]. As the
user modifies a parameter (e.g., speed of a mobile), graphical feed-
back as to the effect of the change is provided to the user.

203

Figure 6: Simulation Real-time Topology Display

In our example study, the simulation runs about ten times faster
then real-time. This is a dramatic increase in speed compared to
other simulation packages. If the user desires, a Maisie hold0 func-
tion can be used to slow down the simulation clock to match up

with the real-time clock [2].

3.4.1 Control Parameters

The interactive buttons at the top of the screen can be used for
either exiting the simulation, stepping through the next interaction
of the clusterhead election algorithm after moving the nodes, or
continuously running through the algorithms and moving the nodes.
The increase and decrease power buttons are used by the channel
model to determine the maximum range of the nodes. The increase
and decrease speed buttons are used to change the number of steps
each node can move on the grid at each iteration of the simulation.

The user is able to interactively control several simulation
parameters including:

l CPULoad
l Communication range (transmit power) in units as

defined by the user
l Location - User can click and move a node in real-time

while simulation is running
l Speed - Maximum numbers of units a node may move

per time unit
l Connection Availability - Can connect/disconnect com-

munication device from node

The user is a.ble to define custom system control parameters as
desired.

3.4.2 Topology Display

This graphical output is used to analyze the connectivity, see the
virtual topology, and view parameters of the simulation. Although
topology display is not required for performance analysis, it is often
useful for testing, debugging, and demonstrating the network con-
nectivity algorithms.

4. Example Study

Admittedly these are very elementary models for the very power-
ful simulation environment described, but allows us to illustrate the
interaction of the various models in the simulation environment. We

provide results and comparisons from experimentation and simula-
tion of a point to point file transfer over a wireless network to dN:ter-
mine where the bottlenecks lie in the node performance.

Actual measurements were done using 2 486-based laptops
hooked up with the UCLA designed radios running WAMISNOS to
provide a point to point wireless link. WAMISNOS is a customized
network operating system which includes the complete TCP/IP pro-
tocol suite, several custom protocols and algorithms for adaptive
instant infrastructure wireless networking, customizable parameters
for the various algorithms, and performance hooks and measure-
ment tools for analysis. A file transfer (1.5 Megabytes) was done
using the FTP application which uses TCP The application and pro-
tocols used are the same ones used throughout the Internet on vari-
ous systems, however customization of the TCP parameters was
done to maximize the possible efficiency and surface node perfor-
mance limitations.

4.1 Simulation Models

We have developed several simple modules in this simulation
environment to model the functionality and performance of the var-
ious components including the network operating system (O!;M),
RP application and TCP transport protocol (SOURCEM), network
algorithm header effect and Maximum Transmission Unit (MITU)
limitations (NAM), two wireless radio modems (RFM), and the
reliability of the wireless channel (CHM).

4.1.1 OSM

In order to model the performance of the WAMIS Network Oper-
ating System (WAMISNOS) running on the 486 laptop, experimen-
tation was done to find out the average processing time for
incoming and outgoing packets. In section 4.3.4 we will examine
how the measurements were done in more detail and their effect.
We found that the average time for the transmitter to transmit the
next packets once it received the ACK was around Sms, whereas
the response time from when a packet arrived into WAMISNOS on
the receiver side until an ACK could be generated averaged around
37ms. Since the source had to receive the ACK and transmit the
packet, in order to estimate the input processing time of a packe:t for
the OSM, we found the average processing time to be 23ms
((37+8)/2).

For every packet received we would enforce a Maisie hold of
23ms for WAMISNOS processing and similarly we would hold for
23ms for every packet sent out through WAMISNOS.

4.1.2 SOURCEM & NAM

The modeling of the file transfer application and TCP prolocol

are done in the SOURCEM module as we saw in section 3.3.5 and
the various parameters are shown in Table 3.

Parameters in TCP which are customizable or tunable include:
the backoff algorithm (exponential or linear), initial round trip time
(KIT), maximum segment size (MSS), and the window size
(WINDOW). The backoff algorithm is designed to provide conges-
tion control throughout the network. The most fair algorithm used
is an exponential backoff algorithm. However, since congestion
would not occur in a point to point file transfer (only 1 link) this

204

backoff algorithm was replaced with a linear backoff algorithm.
The round trip time is used for determining what the time-out
should be for retransmitting lost packets. This round trip time is
based upon an adaptive algorithm which is constantly measuring
and adapting to the current round trip time. A stability parameter is
specified which weights the current round trip time with the aver-
age round trip time. Since TCP is responsible for packetizing the
data bit stream, the maximum segment size specifies the maximum
packet (segment) size which TCP can generate. IP uses a MTU
which specifies the largest packet that can be sent over a particular
network or link. If the segment size is larger then the packet size
then IP does segmentation and reassembly of the packet. So, we set
the MSS to be 40 bytes less (to compensate for headers) then the
MTU. Finally, the window size specifies how much data can be out-
standing before an acknowledgment is required. The benefit of hav-
ing a large window is to handle the case when the latency of the
path is significant compared to the bandwidth. That is, if you can tit
more than 1 packet on the path at a time, then it is useful to have a
window so the bit pipe can be filled. For our wireless radios, the
latency is insignificant compared to the bandwidth so the window
should be set to equal the MSS.

Description

SOURCEM TCP Backoff
Algorithm

Value

Linear

SOURCEM File Size 1751560 Bytes

SOURCEM MSS 3960 Bytes

NAM MTU 4000 Bytes

NAM Header Size 71 Bytes

Table 3: SOURCEM & NAM Parameters

The effects of customization on the performance is significant.
With standard parameters used on most TCP/lP implementations,
the overhead with UCLA’s Radio approaches 99% (depending upon
link errors, back-off algorithm, etc.) Given that customization can
be achieved through better integration of the protocols and link
level implementation, the question which this paper addresses is
where are the remaining bottlenecks.

4.1.3 RFM

The UCLA Direct Sequence Spread Spectrum Modern/Radio
used in experimentation and simulation operates at a fixed chip rate
of l.O32Mchips/sec. With a spreading factor of 32chips/bit, it is
able to achieve a data rate of 32.258 Kbits/sec. A packet interface
card is used to connect the radio with the computer and a packet
driver is used to connect the packet interface card with the WAMIS
Network Operating System. The various rates and customized
parameters for this experiment are shown in table 4.:

Based upon the radio experiments with indoor channel models,
we found the average packet loss to be around 0.15. A packet is lost
any time the CRC checksum fails, the radio fails to acquire the sig-
nal in time, or there. is data corruption such as from interference or
background noise.

r Acquisition Time -1 20&-q

1 Tail Time I lams 1

Media Access Control

CHM Packet Loss Rate

CSMA

.15

Table 4: UCLA Radio & WAMISNOS Parameters

4.2 Validation

Table 5 compares the performance of the FTP application as pre-
dicted by the simulation model with actual measurements. We find

Data Bytes

Sim.

175 1560

Exper.

175 1560

I Packets In I 444 I I 589

;I
Table 5: Simulation & Experimentation Comparison

the simulation results come close to those found in experimenta-
tion. The majority of the difference lies in the accuracy of the TCP
model. A fixed RTO (Retransmission Timeout) was used for every
packet that was lost whereas in the experiment, TCP determines
this parameter dynamically. We also found that through experimen-
tation the packets were not always filled as was in the simulation.
This can probably be attributed to the stream processing functions
in WAMISNOS which could be modeled in the simulation environ-
ment as part of the SOURCEM.

4.3 Performance Bottleneck Analysis

Table 6 presents a breakdown of the various sources of overhead
in the FTF application as determined by experimental measure-
ments. We first examine the sources for each component and subse-
quently compare the experimental results with the simulation
results.

4.3.1 SOURCEM Efficiency

When using the UCLA Radio for the file transfer of the
1.7Megabyte file it took 942.71 seconds (as reported by the applica-
tion), with an overall throughput of 1,858 Bytes&c. or 14,864 bits/
sec. This means that the efftciency of the file transfer was about
46%. We use the following calculation to determine the efficiency:

FileSize Bits
ChannelRate x Byte

TotalTime = Efficiency

205

-

c

Description

1. User Data Transmission (Efficiency)
-

2. Acquisition Time
-

3. Time-outs (Packet Loss)
-

4. CPU Processing (Rx + TX)

5. TCPLIP/WAMIS Headers

6. Tail Time
-

%

46.0

24.6

19.8

2.8

2.2

1.2

7. Misc. (H/W Proc, CRC Checking, Bit Stuffing...)
-

Table 6: Performance Breakdown

3.4

We see that the largest percentage of our breakdown is the user
data (efficiency) which is 46%. At first this seems very good that
the user is able to achieve 46% utilization of the link bandwidth,
however the link bandwidth is only 32Kbits/sec so the user is able
to achieve 14.7Kbps. If we were able to increase the channel rate,
even at the cost of decreasing the link efficiency, we could achieve
a better user throughput. This means that the largest bottleneck in
getting better performance is the limitation in the transmission rate
(raw channel rate) of the radio (32Kbits/sec.).

4.3.2 RFM Acquisition Time

The second major bottleneck is the acquisition (25%). Each time
a packet is transmitted the radio has to go through an acquisition of
the channel which is done by adding on 200ms worth of preamble
data to the beginning of each packet. It is possible to shorten this
preamble time but the error rates and thus retransmission of the data
increase dramatically causing overall poorer performance. Besides
modifying the required time to acquire the channel, this overhead
can be reduced by decreasing the number of packets transmitted.
The larger the packet size, the lower the number of packets, and
thus the less overhead for acquiring all the packets. One of the
major factors enforcing the packet size is the bandwidth-delay
trade-off. Ety increasing the packet size, we can reduce overhead
and increase bandwidth but at the cost of delays (and having to
retransmit more data). To keep the delays and memory require-
ments for storing packets to a minimum, the packet size (MTU) is
constrained to 4K in the current UCLA Radio-WAMISNOS imple-
mentation.

The overhead for acquisition was calculated using the following:
AcqTime

TuraliVunrPkrs (TX + Rx) x -
(3) -

Pkt
TotalTime = AcqOverHead

WAMISNOS includes the ability to monitor and the number of
WAMIS Packets, IP Packets, and TCP segments sent and received
at each node. ‘The numbers of TCP segments sent and received
make up the TotalNumPkts since no segmentation was necessary in
IP (which would cause generation of more packets), and there were
not any WAMIS control algorithms running which would generate
additional pack.ets to the radio. There were 569 data packets sent

and 589 acknowledgment packets sent. Each packet had a 2tXhns
header and the total time for the file transfer was 942.71 seconds or
24.6%.

Tail time is similar to acquisition time; it is the amount of post-
amble used on each packet. This is required to ensure that the
packet is completely sent out before the carrier signal is drclpped.
Experimentation shows that 1Oms is an adequate tail time. The tail
time overhead can be calculated similar to the acquisition tim.e and
is found to be 0.012 of the total raw bandwidth.

4.3.3 SOURCEM Time-outs & CHM Packet Loss

Note that 19.8% of the throughput is lost due to time-outs. Time-
outs occur when a packet is lost (the receiver fails to lock onto the
packet or one or more bit errors occur causing the CRC check to fail
and the packet to be discarded) and then the sender must wait for
the time-out period to occur (failure to get an acknowledgment)
before the packet is retransmitted. The variable time-out period is
called the RTO and varies based upon the measured round trip time
of data flowing across the path and then a weighting is done for sta-
bilization. The base RTO varies around 2200 milliseconds. When a
packet loss does occur, the linear backoff algorithm would increase
in the time before the next packet is transmitted. The time-out starts
increasing linearly as several packet losses occur in a row. If an
exponential backoff algorithm were used, the RTO would have
grow exponentially at this point rather than linearly, making the
throughput dramatically worse.

The following calculation was used as an estimation of the time-
out overhead.

NumPktsLost x RTO
TotalTime (ms) = TimeoutOverHead

During this test, there were 85 packets that had to be retransmit-
ted and the average base RTO was around 22OOms so we find Tim-
eoutOverHead to be 19.8%.

4.3.4 OSM Processing

Not as significant as the first three overheads, CPU Processing
does make an impact on the performance using the UCLA Radio.
Different CPU Processing is done when a packet is either trammit-
ted or received at a node.

The Transmitter (TX) is responsible for taking the bit stream and
forming the packets, and putting the header information on it. We
use a hook in the WAMISNOS system which allows us to watch at
what time (in milliseconds) when an acknowledgment of a packet
comes in from the packet driver into WAMISNOS and until the
next packet is transmitted from WAMISNOS to the packet driver.
We found that the average time is 8ms. If we multiply the number
of packets sent (569) by the amount of proca;sing time (8ms) per
packets, we find the transmitter CPU processing overhead to be
4.5seconds or 0.5% of the total overhead.,

The receiver (Rx) has to check and remove all the header infor-
mation from the packet and verify that the data is correct (passing
the CRC check) and create a response (acknowledgment) to the
sender informing that the data was received correctly. It was mea-

206

sured using the trace facility built into WAMSNOS that the time
from when a packet first arrives in WAMISNOS from the packet
driver until the acknowledgment goes out WAMISNOS back to the
packet driver around 37ms. Since the TCP/IP protocols and the
WAMIS Network Operating System are both competing for CPU
time, along with other applications, protocols, etc., this number can
have a high variance, so much that it would impact the performance
of any time critical algorithms which needed to run at a particular
time, such as TDMA. Since 589 packets were.received and each
had to be processed (37ms/pkt) the total overhead imposed by the
receiver CPU processing was 21.8sec or 2.3% of the overall band-
width.

The total CPU Processing time is the sender’s overhead (0.5%)
plus the receiver’s overhead (2.3%) which totals 2.8%. as is found

in Table 6.

4.3.5 NAM Headers

The application, FTP, uses TCP as its reliable connection ori-
ented transport protocol. The TCP protocol packetizes the bit
stream into segments and encapsulates it with a TCP control header.
This TCP header is usually around 20 bytes. The TCP header con-
tains information such as the source and destination port (applica-
tion), the sequence and acknowledgment number, a 16 bit
checksum, and some miscellaneous flags. TCP sends the segment
down to the IP protocol which encapsulates the segment into a
packet and puts on its own header of approximately 20 bytes. The
IP header contains information such as the total length of the
packet, a 16-bit checksum, an identification field, and source and
destination IP addresses. From here, IP sends the packet down to
the WAMIS algorithms which puts on an additional 31 byte header
which contains information such as the source and destination hard-
ware node address, code and power control information, SIR con-
trol information, etc. The total TCPIIP/WAMIS headers are usually
around 7 1 bytes.

There were 569 data packets sent and 589 acknowledgment
packets sent and at 71 bytes per packet, the total time used up (over-
head) in transmitting header information was about 20.4 seconds
(2.2%).

4.3.6 Miscellaneous

There are a number of other miscellaneous factors which add to
the total overhead (3.4%). It was not possible using the current
analysis and software tools to determine the exact processing time
by the software below the WAMIS Network Operating System.
This includes the time for the packet driver to activate, calculation
of a CRC check for the packet, and Carrier Sense Multiple Access.
The packet has a start of packet (STX) and end of packet (ETX)
marker so the receiver will know the exact beginning and ending of
the packet. Bit stuffing is used to ensure that none of the data inside
the packet would look like one of these delimiters. Then the data
has to be sent out of the packet interface card to the modem and
from there the processing can take place to send it out to the trans-
mitter. The opposite process has to take place on the receiving end.

This overhead was not measured but is the remaining of the over-
heads which had not been compensated for in the analysis above.

4.4 Extending Analysis through Simulation

We found that through customization of TCP parameters, we
were able to achieve a link efftciency of 46% (14.8Kbps) using
UCLA’s Radio with WAMISNOS. As shown in Table 7. the three

t
Description

1. Data Bandwidth

2. Acquisition lime

3. Packet Loss

& Time-outs

4. CPU Processing

5. Protocol Headers

6. Tail Time

8. Other

Table 7: Perform lnce Comparison & Validation

19.8 I 17.0 I

1.2 I 1.0 I

3.4 I 4.4 I

largest bottlenecks in this system are 1) the raw channel rate, 2)
acquisition delays, and 3) time-outs in TCP caused by bit errors and
packet losses in the link. We also see that the simulation environ-
ment breakdown is very similar to that found through experimenta-
tion.

As technology advancement will allow higher channel rates,
other system components will impact the effective data rate. By
using this simulation environment to test parameter space which is
not possible with current technology, we can see in Graph 1, the
trade-off between the effective data rate improvement as the raw
channel rate increases.

Raw Channel Rate (Kbps)

Graph 1: Effective Data Rate vs. Raw Channel Rate

Various system bottlenecks are preventing the linear growth of
the effective data rate as a function of the raw chalnnel rate. In
Graph 2, we see how the CPU Overhead becomes a dominant factor
of the raw channel rate around 7OOKbps and thus the decline in the
data bandwidth efficiency when the CPU processing time is fixed at
around 23ms per packet.

207

Raw Channel Rate (Kbps)

Graph 2: Bottleneck vs. Channel Rate
As technology will also advance the CPU performance, we can

see in Graph 3 the tradeoff between the CPU Overhead and Data

45 40 35 30 25 20 15 10 5 0
Processing Delays (ms)

Graph 3: Bottleneck vs. Processing Delay

Bandwidth efticiency of the channel as CPU processing delays (per
packet) decrease and the channel rate remains fixed at 1Mbps.
When the CPU processing delays fall below 17ms per packet, the
channel rate starts becoming the larger bottleneck.

5. Related Work

There are several different network simulators currently on the
market. These simulators have primarily been used for design and
performance evaluation of networking algorithms. The problem
with these simulators is the lack of full flexibility for customization
such as modeling the operating system kernel or system interfacing
found in the implemented system.

Many existing commercial network evaluation tools suffer from
the following limitations which are addressed in this simulation &
prototyping environment:

l Most tools are not tailored for wireless protocols and
have awkward and inadequate interfaces for specifying
wireless and mobility related parameters.

l Models generated by existing tools are often of little use
in generating working implementations of the protocols.
For instance, the finite state machines used to specify
the protocols in OPNET must be manually re-coded to
design an operational prototype. This leads to unneces-
sary duplication of resources and is also error prone.

l As yet, no common reference model exists for most

.

.

6.

mobile and wireless parameters such as performance
measurements.
Existing prototyping tools do not provide a way to
incorporate operational protocols into the modeling
environment. An important component of the simulation
environment is backporting of existing software and
protocols into the simulation environment for scaling
studies and validation as well as for testing inter-opera-
tion with novel protocols.
Existing simulation tools are extremely slow. Models
with even a relatively small number of mobile devices
(e.g., personal communication systems) can take hours
of execution time on contemporary workstations. Scal-
ability studies involving hundreds, and perhaps thou-
sands of these devices, are practically impossible using
these tools.

Conclusion

This paper described a software architecture for a simulation
environment for mobile, wireless network systems. The environ-
ment provides clearly delineated modules to model each of the pri-
mary components of the system: network operating system, traffic
models, protocol models of the network, data, and physical link I.ev-
els, radio models, and mobility patterns. The environment has been
used to perform a number of studies: this paper described only one
simple study that used the NOS. radio, and channel models to eval-
uate a point-to-point file transfer protocol over a wireless network.
A companion paper submitted to this conference [Gerla, Tsai, Wu]
used the protocol and mobility models to evaluate the performance
of a clusterhead election algorithm as a function of channel chalac-
teristics. We plan to integrate the two preceding models to study the
performance of the protocols as a function of the radio and NOS
characteristics.

The simulation environment was designed using an existing sim-

ulation language call Maisie [3]. Maisie has been implemented on
both sequential and parallel architectures including distributed
memory machines like the IBM SF’2 and shared-memory multipro-
cessor machines like the Sun Spare 1000. The experiments reported
in this study used only the sequential Maisie implementations. F’ar-
allel Maisie implementations have yielded significant performance
improvements for a number of applications that include circuit-sim-
ulation [4], queueing networks [2], and data parallel programs. ‘We
intend to explore the viability of the parallel implementation in
improving the performance of simulation models for wireless net-
works such as those described in this paper. We are also currently
extending this simulation environment to support nomadic comput-
ing issues [15].

7. Acknowledgments

We would like to thank Jack Tsai, Mario Gerla, and Eric Wu for
their support in developing some of the models used in this simula-
tion environment, as well as everyone in the WAMIS project for
their contribution in development of the implemented wireless mul-
timedia system.

208

8. References

[I] Abbott, M. and L. Peterson, “A language-based
approach to protocol implementation”, Technical Report No.
92-2, University of Arizona CSD, July, 1992.

[2] Bagrodia, R. and C.-C. Shen, “MIDAS: Integrated
Design and Performance Evaluation of Distributed Sys-
tems”, IEEE Trunsactions on Sofrware Engineering, Vol.
7(10), pp. 1042-1058, October, 1991.

[3] Bagrodia, R. and W-L. Liao, “Maisie: A language for
design of Efficient Discrete-Event Simulations”, IEEE
Transactions on Sojiware Engineering, April, 1994.

[4] Bagrodia, R., Z. Li. V. Jha, Y. Chen, and J. Cong, “Par-
allel Logic-level simulation of VLSI circuits”, 1994 Winter
Simufution Conference, Orlando, FL, December, 1994.

[S] Boring, W. and J. Short, “UCLA WAMISNOS Net-
work Protocol Programmers Guide”, UCLA Comp. Sci.
Dept. Technical Report, 950010, April 1995.

[6] Chen, S., N. Bambos, and G. Pottie. “Admission con-
trol schemes for wireless communication networks with
adjustable transmitter powers” INFOCOM 94, Toronto, Can-
ada. IEEE 1994.

[7] Chen, S., N. Bambos, and G. Pottie. “On Distributed
Power Control for Radio Networks,” IEEE International
Conference on Communication 1994, New Orleans, LA,
1994, pp 1281-1285.

[8] Chien C., et al., “A 12.7 Mchips/sec All-Digital BPSK
Direct-Sequence Spread Spectrum IF Transceiver”, IEEE
Journal of Solid-State Circuits, Vol. 29, No. 12. December
1994.

[9] Chung, B., C. Chien, H. Samueli, and R. Jain, “Perfor-
mance Analysis of an All-Digital BPSK Direct-Sequence
Spread-Spectrum IF Receiver Architecture”, IEEE Journal
on Selected Areas in Communications, Vol. 11, No. 7, Sep
tember 1993.

[lo] Cox, D., “Wireless Personal Communications: What Is
It?“, IEEE Personal Communications, Vol. 2, No. 2, pp. 2@
35, April 1995.

[1 l] Gerla, M. and J. Tsai, “Multicluster, mobile, multime-
dia radio Network,” accepted for publication in Wireless Net-
works Journal.

[121 IP Mobility Working Group, “Routing Support for lP
Mobile Hosts”, Internet Engineering Task Force, Internet
Draft, 1994.

[13] Mah, B., S. Seshan, K. Keeton, R. Katz, and D. Ferrari.
“Providing Network Video Service to Mobile Clients”, Pro-
ceedings of the Fourth Workshop on Workstation Operating
Systems, Napa, CA, October 1993.

[14] Jain, R.. J. Short, S. Nazareth, L. Kleinrock, and J. Vil-
lasenor, “PC-notebook based mobile networking: Algo-
rithms, Architectures and Implementation,” IEEE
Intemationul Conference on Communication 1995. Seattle,

WA, 1995.

[15] Kleinrock, L., “Nomadic Computing - An Opportu-
nity”, ACM SIGCOMM, Vol. 25, No. 1, pp. 36-40, January,
1995.

[16] Lin, C. and M. Gerla, “A Distributed Control Scheme
in Multi-hop Packet Radio Networks for supporting Voice/
Data Trafftc,” IEEE International Conference on Communi-
cation 1995, Seattle, WA, 1995.

[17] Long, A. C. Jr., S. Namyanaswamy, A. Burstein, R.
Han, K. Lutz, B. Richards, S. Sheng, R. W. Brodersen, and J.
Rabaey; “A Prototype User Interface for a Mobile Multime-
dia Terminal” Proceedings of the 1995 Computer Human
Interface Conference, May 1995.

[18] Schoner, B., J. Villasenor, S. Molloy, and R. Jain.
“Techniques for FPGA Implementation of Video Compres-
sion Systems,” ACMBIGDA International Symposium on
Field-Programmable Gate Arrays 1995, Monterey, Califor-
nia, 1995.

[19] Villasenor, J., B. Belzer, and J. Liao, “Wavelet Filter
Evaluation for Efficient Image Compression,” accepted for
publication in IEEE Transactions on Image Processing,
August, 1995.

Permission to make digital/hard copies of all or part of this material for
personal or clnssroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, tlie title of the publication and its date appear, and notice 1s
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
MOBICOM 95 Berkeley CA USA
0 1995 ACM O-89791-814~2/95/10..%3.50

209

